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Estimation of body mass in white-tailed deer (Odocoileus virginianus) using 
cross-sectional geometry of the metapodial 
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A B S T R A C T   

Zooarchaeologists have developed and used several techniques for estimating the body mass of individual prey 
animals. Many of these are based on skeletal variables such as minimum number of individuals, weight of re-
mains, or linear dimensions of long bone articular ends. All of these techniques fail to account for individual 
variability in body mass across the lifespan driven by the primary productivity of the landscape, sex, ontogeny, 
and season of individual death. Because skeletons are weight-bearing, they constantly remodel in response to 
changes in body mass, making long bone cross-sectional properties an ideal metric for predicting body mass. 
Cross-sectional geometric properties of distal limb bones and body mass of white-tailed deer (Odocoileus vir-
ginianus) were measured in a sample of 64 recently harvested individuals. Best-fit regressions between cross- 
sectional skeletal dimensions and dressed body weight produce higher R-squared values and lower standard 
errors of the estimate than regressions between dressed body weight and linear dimensions of long bone articular 
ends. Cross-sectional geometry can provide new useful line of evidence for estimating body mass of prey animals, 
when available.   

1. Introduction 

Live body weight of a particular species has a variety of analytical 
uses to explore past and present environments, as well as the role of 
humans within those spaces. For example, paleontologists estimate 
biomass to study paleoecology (e.g., Guthrie, 1968; Staff et al., 1985), 
and body mass informs aspects of intra- and inter-specific comparisons 
(Batchelor and Mead, 2007; Klein, 1964; Wolverton et al., 2007). In-
creases in body mass have been suggested to be caused by reduced intra- 
and inter-specific competition, as there are more resources available for 
each individual (Blackburn et al., 1993; Blackburn and Gaston, 1997; 
Densmore, 2009; Hefley et al., 2013; Klein, 1964; Purdue, 1987; Wol-
verton et al., 2007, 2009). Body mass has also been found to correlate 
with ecological variables such as soil fertility (Strickland and Demarais, 
2006) and intensity of predation (Broughton, 1999, 2002; Edwards, 
1967; Stiner et al., 2000; Wolverton et al., 2007, 2008). 

Beyond general environment, body mass specifically helps inform 
models in zooarchaeology. The ability to calculate the live weight of 
prey carcasses was initially considered useful to analyses of human diet 
and in the assessment of the economic importance of prey species 
(Emerson, 1978; Lyman, 1979; White, 1953). Measurements of live 

weight can also be used to provide estimates of meat amounts for skel-
etal element transport models (Binford, 1978; Madrigal and Holt, 2002; 
Purdue, 1987; White, 1953). Body size decreases have also been related 
to questions of human intervention in wild animal populations and 
particularly the start of domestication (Boessneck and von den Driesch, 
1978; Tchernov and Horwitz, 1991). Given body mass’s analytical 
versatility, it is no surprise that equations to predict body mass from 
skeletal remains are a common focus of zooarchaeological research. 

White-tailed deer (Odocoileus virginianus) are an important prey an-
imal across nearly all of prehistoric North and Central America (McCabe 
and McCabe, 1984), making the body mass of this species a useful var-
iable in zooarchaeological analyses. There is also an open question as to 
whether white-tailed deer were the subject of human management 
(Noble and Crerar, 1993; Stewart and Finlayson, 2000; Needs-Howarth 
and Hawkins, 2017). Furthermore, white-tailed deer have as many as 30 
recognized subspecies and vary in size from the dwarfed Key Deer 
(O. virginanus clavium), which typically weight < 39 kg (Boughton et al., 
2019), to northernmost species like the Dakota white-tailed deer 
(O. virginanus dacotum), which typically weight approximately 100 kg 
(Innes, 2013). Anecdotally, the largest white-tailed deer reported have 
had estimated live weights in excess of 220 kg! Body weight is extremely 
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sensitive to food availability, can vary even over very short geographic 
distances, and may not stabilize until well after the cessation of skeletal 
growth (Innes, 2013). This range of variation makes the estimation of 
white-tailed deer weight a valuable tool for zooarchaeologists. In this 
paper, we summarize extant methods of estimating body mass and 
introduce a new technique for estimating the live weight of white-tailed 
deer based on skeletal dimensions. 

1.1. Previous research 

Several methods have been employed to estimate amounts of meat 
represented by skeletal remains of white-tailed deer. The earliest was 
proposed by White (1953) and involved multiplying the minimum 
number of individuals (MNI) in a zooarchaeological collection by the 
average live weight of an adult individual, and then by a fixed edible 
meat percentage of a single adult animal. The percentage is assumed to 
be universally applicable to all individual animals within a species and 
thus to each individual represented in the MNI. However, as this method 
relies on MNI, it is heavily dependent on sample size and how MNI is 
derived (Lyman, 1979, 2008). More importantly, both the fixed per-
centage and the mean adult live weight ignore the particular mass of 
individuals represented in the assemblage (Lyman, 1979); an assem-
blage of 10 small-bodied white-tailed deer gives the same result as an 
assemblage of 10 large-bodied white-tailed deer. This fact has prompted 
efforts to improve the accuracy of body mass estimates based on MNI 
and the percentage conversion factor (e.g., Smith, 1975; Stewart and 
Stahl, 1977). 

Bone weight has also been used to estimate total living body mass 
represented by a collection using two distinct techniques. What we refer 
to as quantification assumes a collection’s total bone weight represents 
7% of live weight and estimates the total biomass accordingly (Casteel, 
1978; Reed, 1963; Uerpmann, 1973). Problems with this technique 
include taphonomic processes such as mineralization, leaching, skeletal 
element composition of the sample, and weathering altering bone 
weight differentially across skeletal elements and taxa (Lyman, 1979; 
Uerpmann, 1973). In addition, similar to the problems associated with 
the fixed universal percentage factor proposed by White (1953), the 7% 
conversion figure makes for a blunt instrument at best. The second 
technique, bone mass allometry, establishes statistical relationships 
between total body weight and total skeletal weight of modern animals, 
and those relationships are then used to convert zooarchaeological 
skeletal weights to total biomass (Reitz and Cordier, 1983; Reitz et al., 
1987). Along with all the taphonomic processes that influence the 
weight of the remains, skeletal composition of the bone sample matters 
greatly but is not accounted for in this technique. Thus, a pound of 
femora suggests the same total biomass as a pound of phalanges in spite 
of those weights likely corresponding to very different biomasses 
(Jackson, 1989; Lyman, 2008). 

Most recently, commonly used methods quantify prehistoric meat 
diet using known relationships between the live weight of modern in-
dividuals and linear measurements of skeletal dimensions to predict 
body weights (e.g., Beisaw, 2007; Davenport, 1999; Densmore, 2009; 
Emerson, 1978, 1983; Garniewicz, 2005; Madrigal, 2014; Madrigal and 
Holt, 2002; Morris and Mead, 2016; Purdue, 1983a, 1983b, 1986, 1987; 
Wolverton et al., 2007). Measurements of these linear dimensions of 
bones are correlated to body mass with moderate-high strength (e.g., 
Casteel, 1974; Emerson, 1978). For example, linear measurements of 
white-tailed deer astragali correlate with body size and explain 87.2% of 
the variation in body mass (Emerson, 1978). Metapodial length and 
width also have a significant and strong correlation with dressed body 
mass (Densmore, 2009); however, the dimensions measured may be 
subject to weathering and distortion that can affect estimates of indi-
vidual body mass (Breslawski and Byers, 2015). 

The main difficulty with using skeletal dimensions to calculate body 
mass is that adult deer body mass is particularly affected by habitat 
variables. Wolverton and colleagues (2009) have suggested that the 

clinal size variation observed in white-tailed deer may be a product of 
food availability as much as Bergmann’s Rule. On a local level, weight of 
adult individuals can be affected by plant availability in different sea-
sons (primary productivity), plant availability in different habitats, 
inter- and intra-specific competition, and annual seasonal variation in 
plant growth (Purdue, 1980; Wolverton et al., 2009). For instance, 
seasonal changes in the amount of food available on the landscape can 
have a major influence on individual body mass, and yearly variation in 
summer forage quality may limit final body size as well (Brown, 1961; 
Purdue, 1989; see Lyman, 2008:88). Droughts and particularly harsh 
years can affect body mass by decreasing the total amount of available 
food (Brown, 1961; Densmore, 2009), although older deer are less 
effected by environmental variation than fawns (Brown, 1961; Kirkpa-
trick, 1976). 

Female deer experience even further variation in body size than 
males. The uterus and associated tissues and fluids of a pregnant deer 
can weigh 20–30 lbs. (Kirkpatrick, 1976). Giving birth removes this 
weight, but even after accounting for fetal weight there is a 4% decline 
in body mass due to resource scarcity (Kirkpatrick, 1976). Yearlings can 
lose even more body mass during their first pregnancy due to stress 
(Kirkpatrick, 1976). When food availability and pregnancy are factored 
in, yearly variation in the body mass of white-tailed deer can approach 
30% (Batchelor and Mead, 2007). 

The constant fluctuation in body mass is difficult to capture using 
available estimation techniques dependent on skeletal measures. As 
indicated above, one technique commonly used today relies on bone size 
to predict body mass. Although it is generally true that big bones 
correlate with big bodies and vice versa, this relationship cannot capture 
many of the above seasonal shifts in body mass, nor are articular end 
dimensions directly modified by body mass after growth. In what fol-
lows, we propose a new technique of measuring skeletal elements that 
partially overcomes this problem. 

1.2. A warrant for, and introduction of a new technique 

Skeletal tissue is a functional tissue that adapts to stresses encoun-
tered during life (Frost, 1987, 2003, 2004). The primary model for 
interpreting differences in long bone diaphysis shape focuses on bone’s 
reaction to mechanical deformation. Long bone diaphyses respond to 
loading (or lack thereof) during life by depositing and resorbing bone in 
order to limit strain to a particular threshold (Frost, 2003). This “ther-
mostat” system minimizes the risk of fracture while also minimizing the 
amount of skeletal material present (Frost, 2003). A number of vari-
ables, including genetic background, environment, and behavior, 
modify this relationship; this larger phenomenon has been referred to as 
bone functional adaptation (Ruff et al., 2006). 

One technique used to interpret changes in bone functional adapta-
tion is cross-sectional geometry, which models long bone diaphyses 
using beam theory. The amount and distribution of bone around the 
neutral axis of a particular skeletal element is used to create estimates of 
bending strength in several directions (Ruff, 2000). Since the early 
1980s, the relationship between diaphyseal morphology and loading has 
provided a theoretical model allowing the interpretation of behavior in 
the archaeological and paleontological record via cross-sectional ge-
ometry (Ruff, 2000). Studies of long bone cross-sectional changes due to 
exercise have used both murine models (Devlin, 2011; Hamrick et al., 
2000; Judex and Carlson, 2009) and human athletes (e.g., Nikander 
et al., 2010; Shaw and Stock, 2013), but also occasionally other animal 
models such as domestic sheep (Ovis aries) (Lieberman, 1996; Lieberman 
et al., 2004). 

The primary predictor of bone cross-sectional properties is body 
mass, as body weight is the base load to which bone is exposed (Moro 
et al., 1996). During human adolescent bone acquisition, body mass 
explains up to 88% of the variation in cross-sectional properties, more 
than any other variable (Ruff, 2003a, 2003b; van der Meulen et al., 
1996). Bone strength measurements of the femur correlate with weight 
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across all ages (Robbins et al., 2010; Stein et al., 1998). This suggests 
that cross-sectional geometry has strong potential to predict body mass 
in a wide variety of animals. 

Importantly, long bone diaphyses remodel to match changes in body 
mass (Ionova-Martin et al., 2010). Calorically-restricted animals lose 
bone mass along with body mass despite otherwise consistent mineral 
and nutritional intake (Lee et al., 1986, 1993; Talbott et al., 1998), and 
this affects the cross-sectional geometry of long bone diaphyses. In a 
sample of mice that had reduced weight due to calorie restriction after 
adulthood, for example, cortical area was a much better predictor of 
body mass than femoral head diameter (Hamrick et al., 2000). Reduced 
cortical area was also observed in human women with lower-than- 
average body mass, whether due to healthy weight variation or exces-
sive weight loss from anorexia nervosa (Galusca et al., 2008). On one 
hand, the bone dimensions typically used to estimate mass of white- 
tailed deer reach maximum size before maximum body mass is 
reached (Batchelor and Mead, 2007; Emerson, 1978; Purdue, 1987; 
Wolverton et al., 2007), thus dimension size may not reflect adult body 
mass, and certainly not weight changes throughout life. Variability in 
cross-sectional geometry of long bone diaphyses, on the other hand, does 
not suffer these issues and therefore is particularly applicable to esti-
mating white-tailed deer body mass. 

Metapodials are an ideal element to use due to their weight-bearing 
role and their tendency to preserve well in zooarchaeological assem-
blages (Lyman, 1984, 1994). Linear measurements of metapodial bones 
have strong relationships with body mass (Densmore, 2009; Morris, 
2003; Purdue, 1989). Bone diameter is also significantly correlated with 
body mass in cervids, even more strongly than bone length (Scott, 1987). 
This mirrors patterns in humans, where diaphysis measurements 
respond more plastically to changes in body mass than do articular ends 
and better reflect current body weight (Ruff et al., 1991). This suggests 
the cross-sectional changes that impact bone diameter may be robust 
predictors of body mass at death, more so than other, more typically 
used measurements. In this paper, we first develop new equations using 
the cross-sectional geometric properties of white-tailed deer meta-
podials to predict body mass. Second, we compare equations using long 
bone diaphyseal properties to those using articular surface measure-
ments to evaluate the accuracy—closeness of the estimate to the true 
value—of two methods of body mass prediction. 

2. Materials and methods 

Metapodia from 64 white-tailed deer were obtained from wild-shot 
individuals during the first weekend of the central Missouri firearm 
hunting seasons, November 2014 and 2016 (Johnston, 2021). In-
dividuals were sorted into three ontogenetic categories as described by 
Purdue (1983a): unfused epiphyses (<20 months for females, <17–23 
months for males), fused epiphyses with visible growth plate (20–29 
months for females, and 23–29 months for males), and fused epiphyses 
with no remaining growth plate (29+ months for males and females). 
Sample sizes varied slightly between metacarpals (MC) and metatarsals 
(MT) because some epiphyses were damaged during disarticulation and 
processing, and fewer forelimbs than hindlimbs were available due to 
trophy skinning techniques (Table 1). 

Carcass weight to the nearest pound was obtained from each deer 
carcass minus distal limb elements, viscera, hide, and head. The 
resulting ‘dressed carcass weight’ reflects the necessities of collecting 

data at a processing plant, and it is this weight rather than total live 
weight that we estimate. Distal limb elements were retained during 
skinning, and subsequently macerated to remove flesh and extract the 
metapodial. 

In order to directly compare predictions from articular ends to those 
from diaphyses without confounding effects from different researchers 
and samples, we duplicated the measurements taken by Purdue (1987) 
using our sample. Measurements of metapodial articular surface size 
were taken (Fig. 1), and two articular areas were calculated (Purdue, 
1987). While Purdue referred to them as “cross sectional areas,” we refer 
to them as “articular areas” here to avoid confusion with the cross- 
sectional geometry terms. What we term the metapodial “proximal 
articular area” (PAA) was called metatarsal/metacarpal proximal cross- 
sectional area by Purdue (1987). Metapodial proximal articular area 
(MTPAA and MCPAA) was calculated following Purdue (1987): he 
assumed a roughly elliptical shape for the proximal metatarsal and used 
MTPW

2 × MTPD
2 × π to estimate area, where MTPW is the maximum 

mediolateral width of the proximal end and MTPD is the maximum 
anteroposterior depth of the proximal end (Fig. 1A). A similar procedure 
was followed for MCPAA (Fig. 1C). The maximum metapodial distal 
articular width (MTDW and MCDW) is simply the latero-medial breadth 
of the distal metapodial (Fig. 1B and D). All measurements were taken 
using digital calipers to the nearest 0.1 mm. 

To calculate cross-sectional geometry, metapodial shafts were 
bisected at 50% of total length and the cross-section of the shaft was 
scanned into a JPEG file (Fig. 1E), oriented using the proximal articular 
facets and bone shape to determine orientation. Total cross-sectional 
area (TA) and cortical area (CA), which are proportional to long bone 
rigidity under compression, and polar second moment of area (J), which 
approximates bone rigidity under torsion, were calculated from the 
JPEG files using MomentMacro (Ruff, 2006). 

Least squares regression was used to predict dressed carcass weight 
from bone measurements. Mass was transformed using a cube root and 
areas with the square root to linearize the regressions. The analysis was 
conducted using multiple regression, with fusion status used as an 
interaction variable. Separate regressions for males and females would 
be ideal, but sex cannot be determined from isolated metapodia. 
Therefore, sexes were combined in our analysis. Regressions were 
calculated using Program R (R Core Team, 2016). 

3. Results 

Means and standard deviations for the linear and cross-sectional 
dimensions of each category of metapodial are given in Table 2. Right 
and left metatarsals were separated to avoid double-counting in-
dividuals and to determine if there was any difference by side. Wilcoxon 
rank sum tests suggest there is no significant difference between any left 
and right metapodial measurements outside of metacarpal proximal 
articular area (p < 0.001). Preferring to err on the side of caution, both 
anatomical sides are retained in the tables. Regression equations pre-
dicting dressed body weight from the pooled age metapodials are found 
in Tables 3 and 4. Regression equations were run both with and without 
fusion as an interaction variable; fusion as a proxy for age is a significant 
predictor versus the pooled sample without the interaction, increasing 
R-squared values for regressions by at least 0.2. Therefore, the equations 
with fusion as an included variable are presented here. Significant 
equations for metapodials with individual age as a covariate are pre-
sented in Table 5. 

In our sample, cross-sectional properties performed at least as well as 
our replication of Purdue’s articular dimensions when judged by stan-
dard error of the estimate and R-squared values (Table 5). However, our 
sample performed less well than Purdue’s, and this discrepancy is 
explored below. 

Table 1 
Sample sizes for each metapodial, based on fusion as a proxy for age.   

L MT R MT L MC R MC 

Unfused 9 9 8 11 
Partially Fused 9 12 12 12 
Completely Fused 42 43 37 38 

NOTE: L, left; R, right; MT, metatarsal; MC, metacarpal. 
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4. Discussion 

The most recent set of equations for predicting the dressed body mass 
of white-tailed deer based on bone dimensions comes from Purdue 
(1987). Importantly, he notes that: 

Differential growth of body parts, particularly the rapid development of 
lower leg bones relative to the slow accumulation of body weight, makes 
the estimation of weight for young deer inaccurate…estimates based on 
elements with fused epiphyseal plates are more trustworthy, but even here, 
body weight often continues to increase after the time of fusion. (Purdue, 
1987:8) 

We applied a more plastic (from the perspective of the individual 

Fig. 1. Dimensions measured for each metatarsal. A: metatarsal proximal articular area (MTPAA). B: metatarsal distal width (MTDW). C: metacarpal proximal 
articular area (MCPAA). D: metacarpal distal width (MCDW). E: example cross-section of shaft used to estimate cross-sectional geometric properties. Images A–D 
from Purdue (1987) with permission. 

Table 2 
Means calculated for each metapodial, with standard deviations in parentheses.  

Dimension L MT (n =
60) 

R MT (n =
64) 

L MC (n =
57) 

R MC (n =
61) 

J (torsional 
rigidity) 

14003.90 
(4963.98) 

13248.5 
(5226.76) 

9630.23 
(3453.43) 

9766.41 
(3637.07) 

CA (cortical 
area) 

224.34 
(45.41) 

218.06 
(47.85) 

183.10 
(34.98) 

184.52 
(37.28) 

TA (total area) 296.57 
(54.56) 

288.73 
(57.58) 

241.84 
(45.38) 

243.40 
(47.74) 

MTDW & MCDW 32.19 (1.80) 32.09 (2.04) 30.10 (2.25) 30.13 (2.01) 
PAA (proximal 

articular area) 
617.53 
(66.68) 

601.87 
(64.06) 

591.69 
(126.75) 

478.68 
(61.35)  

Table 3 
Regression equations between metatarsal measurements and dressed body weights. 0 indicates unfused growth plates, 1 indicates growth plates that are fused but 
visible, and 2 indicates no visible growth plates.  

Dimension L MT R MT  

Intercept Slope Fusion Coefficient SEE %SEE Intercept Slope Fusion Coefficient SEE %SEE 

SQRT J  2.722  0.012 0: 0 
1: 0.235* 
2: 0.729  

0.29  0.25  2.893  0.011 0: 0 
1: 0.156* 
2: 0.700  

0.29  0.26 

SQRT CA  1.443  0.183 0: 0 
1: 0.246* 
2: 0.729  

0.29  1.95  1.800  0.160 0: 0 
1: 0.136* 
2: 0.742  

0.29  1.97 

SQRT TA  1.547  0.151 0: 0 
1: 0.222* 
2: 0.756  

0.30  1.76  1.689  0.143 0: 0 
1: 0.162* 
2: 0.727  

0.29  1.73 

MTDW  0.453  0.112 0: 0 
1: 0.085* 
2: 0.752  

0.31  0.97  1.163  0.091 0: 0 
1: 0.057* 
2: 0.700  

0.31  0.98 

PAA  0.400  0.146 0: 0 
1: 0.189* 
2: 0.864  

0.33  0.05  0.680  0.137 0: 0 
1: 0.141* 
2: 0.720  

0.32  0.05  

* Not significant to p < 0.05. 
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deer) set of bone measurements—cross-sectional geometry—that should 
adapt to current body mass and address the issues Purdue raised. Cross- 
sectional properties should change and adapt to current mass, whether 
the individual is a juvenile or a completely fused adult. R-squared values 
and SEE were calculated in order to compare our results both with 
Purdue’s (1987) previously published formulae for estimating white- 
tailed deer dressed body mass from measurements of proximal artic-
ular surface (PAA) and with equations generated from articular surface 
measurements in our sample. The cross-sectional variables we measured 
had higher R-squared values than our replications of Purdue’s (1987) 
articular end measurements (Table 5). This was expected as cross- 
sectional properties and particularly total cross-sectional area should 
be responsive to compressive forces—the main force placed upon the 
bones by body mass. 

We compared our mixed-sex regressions to Purdue’s (1987) mixed- 
sex regressions for metapodial articular surfaces. Our replications of 
Purdue’s (1987) metapodial measurements (MTDW, MCDW, PAA) 
typically explain less variation in body mass (have lower R-squares) than 
do his measurements, and our replications also frequently have greater 
standard errors of the estimate than do his measurements (Table 5). 
There are two likely reasons for these differences. First, Purdue’s sample 
was made up of 13 males and 33–36 females (depending on the 
dimension under scrutiny); our sample included 37–46 males and 17–21 
females. Given the species is sexually dimorphic (e.g., Wolverton et al., 
2009), it is likely the difference in sex ratios (Purdue 1 m:2.54 f; John-
ston 2.17 m:1 f) is having an influence on each sample’s predictive ac-
curacy. Second, Purdue’s sample of males and females only includes 
individuals ≥42 months of age, resulting in a relatively ontogenetically 
homogeneous set of animals that have most likely reached their 
maximum body growth. In contrast, our sample includes individuals 
from across the growth spectrum. Major differences in the ontogeny of 
individuals included in each sample are also likely having a major in-
fluence on the amount of variability in dressed carcass weight. Because 
of the likely influences of sexual and ontogenetic differences between 

our sample and Purdue’s, we believe any indication of whether cross- 
sectional geometry is a better predictor of body mass than articular 
end dimensions must be derived from comparisons of those measure-
ments from our sample alone. 

Purdue (1987) converted the weight of the dressed deer carcasses in 
his sample to live weights. We employed a similar tactic and estimated 
live weights using Hamerstrom and Camburn’s (1950) equation for 
converting dressed weight to live weight. Using estimated live weights 
slightly increased the standard error and R-squared values for equations 
predicting body mass from linear and cross-sectional measurements. 
This is expected, since adding an estimated parameter for live weight 
would introduce more error into the final result. Therefore, these 
equations are not presented here. Our equations based on directly 
measured dressed carcass weights do not preclude estimating whole 
body mass based on Hamerstrom and Camburn’s (1950) equation, 
Roseberry and Klimstra’s (1975) equation, or any other such equations. 

Our analysis bears some similarities to human body mass estimations 
based on cross-sectional geometry. The standard error of the estimate 
(SEE) and %SEE for our deer sample were, however, much lower than 
the SEE and %SEE reported for similar regressions in other organisms, 
including humans, never reaching greater than 2% SEE (Tables 3 and 4). 
In comparison, when body mass equations were generated for juvenile 
human remains, the %SEE were never <5% SEE (Robbins Schug and 
Goldman, 2014). This may be because of differences in quadrupedal 
versus bipedal locomotion, which would confine movement to partic-
ular planes, or differences in body composition between humans and 
white-tailed deer. Deer also have less variation in lower limb activity 
than do humans, which could influence the error rates. 

Based on comparable SEE values and the highest R-squared value, 
cortical area (CA) was the best predictor of dressed body mass for our 
sample. This is theoretically plausible as cortical area is proportional to 
overall axial loading of the limb. Second, polar moment of the area (J) 
and total area (TA) of the metapodials were typically high-performing 
measurements, confirming Robbins and colleagues (2010) conclusion 

Table 4 
Regression equations between metacarpal measurements and dressed body weights. 0 indicates unfused growth plates, 1 indicates growth plates that are fused but 
visible, and 2 indicates visible growth plates.  

Dimension L MC R MC  

Intercept Slope Fusion Coefficient SEE %SEE Intercept Slope Fusion Coefficient SEE %SEE 

SQRT J  3.405  0.012 0: 0 
1: − 0.394 
2: − 0.237*  

0.24  0.26  2.878  0.015 0: 0 
1: − 0.023* 
2: 0.251  

0.29  0.29 

SQRT CA  2.012  0.185 0: 0 
1: − 0.295* 
2: − 0.099*  

0.22  1.63  1.673  0.196 0: 0 
1: − 0.017* 
2: 0.263  

0.29  2.13 

SQRT TA  2.278  0.144 0: 0 
1: − 0.362* 
2: − 0.187*  

0.24  1.54  0.531  0.248 0: 0 
1: − 0.018* 
2: 0.286  

0.29  1.86 

MCDW  2.253  0.069 0: 0 
1: − 0.393* 
2: − 0.034  

0.28  0.90  0.068*  0.134 0: 0 
1: 0.199 
2: 0.749*  

0.29  0.94 

PAA  1.912  0.099 0: 0 
1: − 0.559 
2: − 0.300*  

0.27  0.04  0.920*  0.147* 0: 0 
1: − 0.010* 
2: 0.531  

0.31  0.07  

* Not significant to p < 0.05. 

Table 5 
Standard error of the estimate and adjusted R-squared values for metapodial dimensions versus dressed weight of white-tailed deer carcasses.  

Dimension L MT (n = 60) R MT (n = 64) L MC (n = 57) R MC (n = 61) Purdue (1987)  

R- Squared SEE R-squared SEE R-squared SEE R-squared SEE Hindlimb R-squared SEE Forelimb R-squared SEE 

J  0.641  0.29  0.652  0.29  0.685  0.24  0.641  0.29     
CA  0.637  0.29  0.657  0.29  0.737  0.22  0.627  0.29     
TA  0.611  0.30  0.648  0.29  0.688  0.24  0.624  0.29     
MTDW/MCDW  0.587  0.31  0.595  0.31  0.572  0.28  0.638  0.29  0.70  0.101  0.73  0.117 
PAA  0.546  0.33  0.575  0.32  0.594  0.27  0.565  0.31  0.73  0.128  0.70  0.123  
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that cross-sectional measurements of the diaphyses were generally bet-
ter predictors of body mass than linear measurements of articular ends. 

There is an additional reason why cross-sectional measurements 
resulted in higher R-squared values and lower SEE than articular ends in 
our sample. Linear measurements of articular ends estimate body size (e. 
g., height, length), not body mass. As noted by Purdue (1987), size is a 
static property that will not be altered after the secession of growth, but 
weight is a dynamic property that will regularly vary across an in-
dividual’s life. For example, two individuals of the same height may 
have drastically different weights at any point across their lifespans. 
Therefore, cross-sectional properties are likely to correlate well with 
body weight at the time of death, as opposed to adult linear measure-
ments, which correspond to body size at the time of maturity. 

Cross-sectional measurements may then have less broad utility than 
articular end measurements, but still may serve a role when available for 
analysis. One potential difficulty with cross-sectional geometry is that it 
is derived from shaft dimensions. Many long-bone articular ends are 
quite dense and tend to survive well in the archaeological record but are 
frequently damaged by predator gnawing and other taphonomic pro-
cesses (e.g., Lyman, 1984, 1994, 2014; Marean and Frey, 1997; Marean 
and Spencer, 1991). Long bone diaphyses or shafts, in contrast, are often 
broken to facilitate marrow extraction (e.g., NOE-Nygaard, 1977) or 
simply through taphonomic processes. But a diverse array of evidence 
suggests that long bone shafts may often preserve sufficiently well 
relative to articular ends that the former provide larger minimum 
numbers of elements (MNE) than the latter (Marean et al., 2004). Even if 
metapodial shafts have been split, refitting fragments can produce suf-
ficiently anatomically complete specimens that their cross-sectional 
geometry can be measured. Cross-sectional measurements can provide 
a supplemental line of evidence that can aid in zooarchaeological 
analyses. 

One concern is that it may be difficult to locate the midshaft in an 
incomplete metapodial. Similar questions have been asked about human 
specimens, and it has been suggested that CA maintains mean accuracy 
from between 40 and 78% of overall length in the human tibia, while J is 
much more restrictive (Sládek et al., 2010). As the deer metapodial is 
more consistent in shape and has fewer muscle attachments than the 
human tibia, it may be feasible to use CA over a similar range to estimate 
mass even when the exact midshaft is unclear. 

One benefit to diaphyseal cross-sections is that they do not rely on 
anatomical landmarks that may be destroyed or deformed by predator 
gnawing, weathering, or abrasion. A disadvantage of using diaphyses is 
they are typically diagnostic only to taxonomic Family, and sometimes 
only to taxonomic Order. For instance, there are several North American 
artiodactyls with adult body size very similar to white-tailed deer and 
thus far taxonomically diagnostic morphological features of the long- 
bone diaphyses are unknown (e.g., Hildebrand, 1955; Jacobson, 2003; 
Lawrence, 1951). Therefore, applying our regression formulae for white- 
tailed deer to bone assemblages that include remains of white-tailed 
deer, mule deer (O. hemionus), pronghorn (Antilocapra americana), and 
bighorn sheep (Ovis canadensis) will not doubt provide inaccurate esti-
mates of meat amounts. 

Our project suggests that cross-sectional measurements are good 
predictors of body mass, but we emphasize that the inclusion of other 
variables may increase their accuracy. We were not able to record the 
exact ontogenetic ages of specimens such as might be accomplished by 
noting aspects of tooth eruption and wear (e.g., Severinghaus, 1949; 
Taber, 1963). The ordinal-scale categories we used show the occasional 
impact of age on body mass estimates, typically between fully grown 
individuals and younger individuals, something previously noted by 
others (Emerson, 1978; Purdue, 1987). Importantly, it suggests caution 
when applying our method to mixed-age samples. Samples of known-age 
and sexed individuals would allow age–sex-specific regression lines that 
would be very useful for predicting body mass. 

5. Conclusion 

We present a new set of regression equations to predict the body 
mass of white-tailed deer. These equations are based on a biometric 
property previously unexplored in this species. Cross-sectional geometry 
of long bone diaphyses has been shown to be a useful tool for estimating 
human body mass, and we here expand its use to zooarchaeological 
applications. Cross-sectional properties explain more of the variation in 
body mass in white-tailed deer than dimensions of articular ends. These 
estimates compare favorably to previous research on deer body mass 
estimates. This suggests that our equations could be useful in refining 
estimates of total deer body mass by allowing calculations based on non- 
typically measured skeletal parts (long-bone diaphyses). Such would 
provide an assessment of diet that is more-or-less independent of more 
traditional measurement techniques. Despite the preservation chal-
lenges in measuring bone shafts, when available, our method should 
have wide-ranging applicability to the zooarchaeological record. 
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